Metamath Proof Explorer


Theorem inopnd

Description: The intersection of two open sets of a topology is an open set. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses inopnd.1 φ J Top
inopnd.2 φ A J
inopnd.3 φ B J
Assertion inopnd φ A B J

Proof

Step Hyp Ref Expression
1 inopnd.1 φ J Top
2 inopnd.2 φ A J
3 inopnd.3 φ B J
4 inopn J Top A J B J A B J
5 1 2 3 4 syl3anc φ A B J