Metamath Proof Explorer


Theorem inpreima

Description: Preimage of an intersection. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 14-Jun-2016)

Ref Expression
Assertion inpreima FunFF-1AB=F-1AF-1B

Proof

Step Hyp Ref Expression
1 funcnvcnv FunFFunF-1-1
2 imain FunF-1-1F-1AB=F-1AF-1B
3 1 2 syl FunFF-1AB=F-1AF-1B