Metamath Proof Explorer


Theorem inrab

Description: Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006)

Ref Expression
Assertion inrab x A | φ x A | ψ = x A | φ ψ

Proof

Step Hyp Ref Expression
1 df-rab x A | φ = x | x A φ
2 df-rab x A | ψ = x | x A ψ
3 1 2 ineq12i x A | φ x A | ψ = x | x A φ x | x A ψ
4 df-rab x A | φ ψ = x | x A φ ψ
5 inab x | x A φ x | x A ψ = x | x A φ x A ψ
6 anandi x A φ ψ x A φ x A ψ
7 6 abbii x | x A φ ψ = x | x A φ x A ψ
8 5 7 eqtr4i x | x A φ x | x A ψ = x | x A φ ψ
9 4 8 eqtr4i x A | φ ψ = x | x A φ x | x A ψ
10 3 9 eqtr4i x A | φ x A | ψ = x A | φ ψ