Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
Class abstractions with difference, union, and intersection of two classes
inrab
Next ⟩
inrab2
Metamath Proof Explorer
Ascii
Unicode
Theorem
inrab
Description:
Intersection of two restricted class abstractions.
(Contributed by
NM
, 1-Sep-2006)
Ref
Expression
Assertion
inrab
⊢
x
∈
A
|
φ
∩
x
∈
A
|
ψ
=
x
∈
A
|
φ
∧
ψ
Proof
Step
Hyp
Ref
Expression
1
df-rab
⊢
x
∈
A
|
φ
=
x
|
x
∈
A
∧
φ
2
df-rab
⊢
x
∈
A
|
ψ
=
x
|
x
∈
A
∧
ψ
3
1
2
ineq12i
⊢
x
∈
A
|
φ
∩
x
∈
A
|
ψ
=
x
|
x
∈
A
∧
φ
∩
x
|
x
∈
A
∧
ψ
4
df-rab
⊢
x
∈
A
|
φ
∧
ψ
=
x
|
x
∈
A
∧
φ
∧
ψ
5
inab
⊢
x
|
x
∈
A
∧
φ
∩
x
|
x
∈
A
∧
ψ
=
x
|
x
∈
A
∧
φ
∧
x
∈
A
∧
ψ
6
anandi
⊢
x
∈
A
∧
φ
∧
ψ
↔
x
∈
A
∧
φ
∧
x
∈
A
∧
ψ
7
6
abbii
⊢
x
|
x
∈
A
∧
φ
∧
ψ
=
x
|
x
∈
A
∧
φ
∧
x
∈
A
∧
ψ
8
5
7
eqtr4i
⊢
x
|
x
∈
A
∧
φ
∩
x
|
x
∈
A
∧
ψ
=
x
|
x
∈
A
∧
φ
∧
ψ
9
4
8
eqtr4i
⊢
x
∈
A
|
φ
∧
ψ
=
x
|
x
∈
A
∧
φ
∩
x
|
x
∈
A
∧
ψ
10
3
9
eqtr4i
⊢
x
∈
A
|
φ
∩
x
∈
A
|
ψ
=
x
∈
A
|
φ
∧
ψ