Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
Class abstractions with difference, union, and intersection of two classes
inrab2
Next ⟩
difrab
Metamath Proof Explorer
Ascii
Unicode
Theorem
inrab2
Description:
Intersection with a restricted class abstraction.
(Contributed by
NM
, 19-Nov-2007)
Ref
Expression
Assertion
inrab2
⊢
x
∈
A
|
φ
∩
B
=
x
∈
A
∩
B
|
φ
Proof
Step
Hyp
Ref
Expression
1
df-rab
⊢
x
∈
A
|
φ
=
x
|
x
∈
A
∧
φ
2
abid1
⊢
B
=
x
|
x
∈
B
3
1
2
ineq12i
⊢
x
∈
A
|
φ
∩
B
=
x
|
x
∈
A
∧
φ
∩
x
|
x
∈
B
4
df-rab
⊢
x
∈
A
∩
B
|
φ
=
x
|
x
∈
A
∩
B
∧
φ
5
inab
⊢
x
|
x
∈
A
∧
φ
∩
x
|
x
∈
B
=
x
|
x
∈
A
∧
φ
∧
x
∈
B
6
elin
⊢
x
∈
A
∩
B
↔
x
∈
A
∧
x
∈
B
7
6
anbi1i
⊢
x
∈
A
∩
B
∧
φ
↔
x
∈
A
∧
x
∈
B
∧
φ
8
an32
⊢
x
∈
A
∧
x
∈
B
∧
φ
↔
x
∈
A
∧
φ
∧
x
∈
B
9
7
8
bitri
⊢
x
∈
A
∩
B
∧
φ
↔
x
∈
A
∧
φ
∧
x
∈
B
10
9
abbii
⊢
x
|
x
∈
A
∩
B
∧
φ
=
x
|
x
∈
A
∧
φ
∧
x
∈
B
11
5
10
eqtr4i
⊢
x
|
x
∈
A
∧
φ
∩
x
|
x
∈
B
=
x
|
x
∈
A
∩
B
∧
φ
12
4
11
eqtr4i
⊢
x
∈
A
∩
B
|
φ
=
x
|
x
∈
A
∧
φ
∩
x
|
x
∈
B
13
3
12
eqtr4i
⊢
x
∈
A
|
φ
∩
B
=
x
∈
A
∩
B
|
φ