Metamath Proof Explorer


Theorem inrab2

Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007)

Ref Expression
Assertion inrab2 x A | φ B = x A B | φ

Proof

Step Hyp Ref Expression
1 df-rab x A | φ = x | x A φ
2 abid1 B = x | x B
3 1 2 ineq12i x A | φ B = x | x A φ x | x B
4 df-rab x A B | φ = x | x A B φ
5 inab x | x A φ x | x B = x | x A φ x B
6 elin x A B x A x B
7 6 anbi1i x A B φ x A x B φ
8 an32 x A x B φ x A φ x B
9 7 8 bitri x A B φ x A φ x B
10 9 abbii x | x A B φ = x | x A φ x B
11 5 10 eqtr4i x | x A φ x | x B = x | x A B φ
12 4 11 eqtr4i x A B | φ = x | x A φ x | x B
13 3 12 eqtr4i x A | φ B = x A B | φ