Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
inres
Next ⟩
resdifcom
Metamath Proof Explorer
Ascii
Unicode
Theorem
inres
Description:
Move intersection into class restriction.
(Contributed by
NM
, 18-Dec-2008)
Ref
Expression
Assertion
inres
⊢
A
∩
B
↾
C
=
A
∩
B
↾
C
Proof
Step
Hyp
Ref
Expression
1
inass
⊢
A
∩
B
∩
C
×
V
=
A
∩
B
∩
C
×
V
2
df-res
⊢
A
∩
B
↾
C
=
A
∩
B
∩
C
×
V
3
df-res
⊢
B
↾
C
=
B
∩
C
×
V
4
3
ineq2i
⊢
A
∩
B
↾
C
=
A
∩
B
∩
C
×
V
5
1
2
4
3eqtr4ri
⊢
A
∩
B
↾
C
=
A
∩
B
↾
C