Metamath Proof Explorer


Theorem inrresf

Description: The right injection restricted to the right class of a disjoint union is a function from the right class into the disjoint union. (Contributed by AV, 27-Jun-2022)

Ref Expression
Assertion inrresf inr B : B A ⊔︀ B

Proof

Step Hyp Ref Expression
1 djurf1o inr : V 1-1 onto 1 𝑜 × V
2 f1ofun inr : V 1-1 onto 1 𝑜 × V Fun inr
3 ffvresb Fun inr inr B : B A ⊔︀ B x B x dom inr inr x A ⊔︀ B
4 1 2 3 mp2b inr B : B A ⊔︀ B x B x dom inr inr x A ⊔︀ B
5 elex x B x V
6 opex 1 𝑜 x V
7 df-inr inr = x V 1 𝑜 x
8 6 7 dmmpti dom inr = V
9 5 8 eleqtrrdi x B x dom inr
10 djurcl x B inr x A ⊔︀ B
11 9 10 jca x B x dom inr inr x A ⊔︀ B
12 4 11 mprgbir inr B : B A ⊔︀ B