Metamath Proof Explorer


Theorem inss

Description: Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014)

Ref Expression
Assertion inss A C B C A B C

Proof

Step Hyp Ref Expression
1 ssinss1 A C A B C
2 incom A B = B A
3 ssinss1 B C B A C
4 2 3 eqsstrid B C A B C
5 1 4 jaoi A C B C A B C