Metamath Proof Explorer


Theorem int0

Description: The intersection of the empty set is the universal class. Exercise 2 of TakeutiZaring p. 44. (Contributed by NM, 18-Aug-1993) (Proof shortened by JJ, 26-Jul-2021)

Ref Expression
Assertion int0 = V

Proof

Step Hyp Ref Expression
1 ral0 x y x
2 vex y V
3 2 elint2 y x y x
4 1 3 mpbir y
5 4 2 2th y y V
6 5 eqriv = V