Database
BASIC TOPOLOGY
Topology
Closure and interior
intcld
Next ⟩
uncld
Metamath Proof Explorer
Ascii
Unicode
Theorem
intcld
Description:
The intersection of a set of closed sets is closed.
(Contributed by
NM
, 5-Oct-2006)
Ref
Expression
Assertion
intcld
⊢
A
≠
∅
∧
A
⊆
Clsd
⁡
J
→
⋂
A
∈
Clsd
⁡
J
Proof
Step
Hyp
Ref
Expression
1
intiin
⊢
⋂
A
=
⋂
x
∈
A
x
2
dfss3
⊢
A
⊆
Clsd
⁡
J
↔
∀
x
∈
A
x
∈
Clsd
⁡
J
3
iincld
⊢
A
≠
∅
∧
∀
x
∈
A
x
∈
Clsd
⁡
J
→
⋂
x
∈
A
x
∈
Clsd
⁡
J
4
2
3
sylan2b
⊢
A
≠
∅
∧
A
⊆
Clsd
⁡
J
→
⋂
x
∈
A
x
∈
Clsd
⁡
J
5
1
4
eqeltrid
⊢
A
≠
∅
∧
A
⊆
Clsd
⁡
J
→
⋂
A
∈
Clsd
⁡
J