Metamath Proof Explorer


Theorem inteq

Description: Equality law for intersection. (Contributed by NM, 13-Sep-1999)

Ref Expression
Assertion inteq A = B A = B

Proof

Step Hyp Ref Expression
1 raleq A = B y A x y y B x y
2 1 abbidv A = B x | y A x y = x | y B x y
3 dfint2 A = x | y A x y
4 dfint2 B = x | y B x y
5 2 3 4 3eqtr4g A = B A = B