Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The intersection of a class
inteq
Next ⟩
inteqi
Metamath Proof Explorer
Ascii
Unicode
Theorem
inteq
Description:
Equality law for intersection.
(Contributed by
NM
, 13-Sep-1999)
Ref
Expression
Assertion
inteq
⊢
A
=
B
→
⋂
A
=
⋂
B
Proof
Step
Hyp
Ref
Expression
1
raleq
⊢
A
=
B
→
∀
y
∈
A
x
∈
y
↔
∀
y
∈
B
x
∈
y
2
1
abbidv
⊢
A
=
B
→
x
|
∀
y
∈
A
x
∈
y
=
x
|
∀
y
∈
B
x
∈
y
3
dfint2
⊢
⋂
A
=
x
|
∀
y
∈
A
x
∈
y
4
dfint2
⊢
⋂
B
=
x
|
∀
y
∈
B
x
∈
y
5
2
3
4
3eqtr4g
⊢
A
=
B
→
⋂
A
=
⋂
B