Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The intersection of a class
inteqd
Next ⟩
elint
Metamath Proof Explorer
Ascii
Unicode
Theorem
inteqd
Description:
Equality deduction for class intersection.
(Contributed by
NM
, 2-Sep-2003)
Ref
Expression
Hypothesis
inteqd.1
⊢
φ
→
A
=
B
Assertion
inteqd
⊢
φ
→
⋂
A
=
⋂
B
Proof
Step
Hyp
Ref
Expression
1
inteqd.1
⊢
φ
→
A
=
B
2
inteq
⊢
A
=
B
→
⋂
A
=
⋂
B
3
1
2
syl
⊢
φ
→
⋂
A
=
⋂
B