Metamath Proof Explorer


Theorem intexab

Description: The intersection of a nonempty class abstraction exists. (Contributed by NM, 21-Oct-2003)

Ref Expression
Assertion intexab x φ x | φ V

Proof

Step Hyp Ref Expression
1 abn0 x | φ x φ
2 intex x | φ x | φ V
3 1 2 bitr3i x φ x | φ V