Metamath Proof Explorer


Theorem intexrab

Description: The intersection of a nonempty restricted class abstraction exists. (Contributed by NM, 21-Oct-2003)

Ref Expression
Assertion intexrab x A φ x A | φ V

Proof

Step Hyp Ref Expression
1 intexab x x A φ x | x A φ V
2 df-rex x A φ x x A φ
3 df-rab x A | φ = x | x A φ
4 3 inteqi x A | φ = x | x A φ
5 4 eleq1i x A | φ V x | x A φ V
6 1 2 5 3bitr4i x A φ x A | φ V