| Step |
Hyp |
Ref |
Expression |
| 1 |
|
intfracq.1 |
|
| 2 |
|
intfracq.2 |
|
| 3 |
|
zre |
|
| 4 |
3
|
adantr |
|
| 5 |
|
nnre |
|
| 6 |
5
|
adantl |
|
| 7 |
|
nnne0 |
|
| 8 |
7
|
adantl |
|
| 9 |
4 6 8
|
redivcld |
|
| 10 |
1 2
|
intfrac2 |
|
| 11 |
9 10
|
syl |
|
| 12 |
11
|
simp1d |
|
| 13 |
|
fraclt1 |
|
| 14 |
9 13
|
syl |
|
| 15 |
1
|
oveq2i |
|
| 16 |
2 15
|
eqtri |
|
| 17 |
16
|
a1i |
|
| 18 |
|
nncn |
|
| 19 |
18 7
|
dividd |
|
| 20 |
19
|
adantl |
|
| 21 |
14 17 20
|
3brtr4d |
|
| 22 |
|
reflcl |
|
| 23 |
9 22
|
syl |
|
| 24 |
1 23
|
eqeltrid |
|
| 25 |
9 24
|
resubcld |
|
| 26 |
2 25
|
eqeltrid |
|
| 27 |
|
nngt0 |
|
| 28 |
5 27
|
jca |
|
| 29 |
28
|
adantl |
|
| 30 |
|
ltmuldiv2 |
|
| 31 |
26 6 29 30
|
syl3anc |
|
| 32 |
21 31
|
mpbird |
|
| 33 |
2
|
oveq2i |
|
| 34 |
18
|
adantl |
|
| 35 |
9
|
recnd |
|
| 36 |
9
|
flcld |
|
| 37 |
1 36
|
eqeltrid |
|
| 38 |
37
|
zcnd |
|
| 39 |
34 35 38
|
subdid |
|
| 40 |
33 39
|
eqtrid |
|
| 41 |
|
zcn |
|
| 42 |
41
|
adantr |
|
| 43 |
42 34 8
|
divcan2d |
|
| 44 |
|
simpl |
|
| 45 |
43 44
|
eqeltrd |
|
| 46 |
|
nnz |
|
| 47 |
46
|
adantl |
|
| 48 |
47 37
|
zmulcld |
|
| 49 |
45 48
|
zsubcld |
|
| 50 |
40 49
|
eqeltrd |
|
| 51 |
|
zltlem1 |
|
| 52 |
50 47 51
|
syl2anc |
|
| 53 |
32 52
|
mpbid |
|
| 54 |
|
peano2rem |
|
| 55 |
5 54
|
syl |
|
| 56 |
55
|
adantl |
|
| 57 |
|
lemuldiv2 |
|
| 58 |
26 56 29 57
|
syl3anc |
|
| 59 |
53 58
|
mpbid |
|
| 60 |
11
|
simp3d |
|
| 61 |
12 59 60
|
3jca |
|