Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
intex |
|
3 |
1 2
|
sylib |
|
4 |
|
dfss3 |
|
5 |
|
grutr |
|
6 |
5
|
ralimi |
|
7 |
4 6
|
sylbi |
|
8 |
|
trint |
|
9 |
7 8
|
syl |
|
10 |
9
|
adantr |
|
11 |
|
grupw |
|
12 |
11
|
ex |
|
13 |
12
|
ral2imi |
|
14 |
|
vex |
|
15 |
14
|
elint2 |
|
16 |
|
vpwex |
|
17 |
16
|
elint2 |
|
18 |
13 15 17
|
3imtr4g |
|
19 |
18
|
imp |
|
20 |
19
|
adantlr |
|
21 |
|
r19.26 |
|
22 |
|
grupr |
|
23 |
22
|
3expia |
|
24 |
23
|
ral2imi |
|
25 |
21 24
|
sylbir |
|
26 |
|
vex |
|
27 |
26
|
elint2 |
|
28 |
|
prex |
|
29 |
28
|
elint2 |
|
30 |
25 27 29
|
3imtr4g |
|
31 |
15 30
|
sylan2b |
|
32 |
31
|
ralrimiv |
|
33 |
32
|
adantlr |
|
34 |
|
elmapg |
|
35 |
34
|
elvd |
|
36 |
2 35
|
sylbi |
|
37 |
36
|
ad2antlr |
|
38 |
|
intss1 |
|
39 |
|
fss |
|
40 |
38 39
|
sylan2 |
|
41 |
40
|
ralrimiva |
|
42 |
|
gruurn |
|
43 |
42
|
3expia |
|
44 |
43
|
ral2imi |
|
45 |
21 44
|
sylbir |
|
46 |
15 45
|
sylan2b |
|
47 |
41 46
|
syl5 |
|
48 |
26
|
rnex |
|
49 |
48
|
uniex |
|
50 |
49
|
elint2 |
|
51 |
47 50
|
syl6ibr |
|
52 |
51
|
adantlr |
|
53 |
37 52
|
sylbid |
|
54 |
53
|
ralrimiv |
|
55 |
20 33 54
|
3jca |
|
56 |
55
|
ralrimiva |
|
57 |
4 56
|
sylanb |
|
58 |
|
elgrug |
|
59 |
58
|
biimpar |
|
60 |
3 10 57 59
|
syl12anc |
|