Metamath Proof Explorer


Theorem intgru

Description: The intersection of a family of universes is a universe. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion intgru A Univ A A Univ

Proof

Step Hyp Ref Expression
1 simpr A Univ A A
2 intex A A V
3 1 2 sylib A Univ A A V
4 dfss3 A Univ u A u Univ
5 grutr u Univ Tr u
6 5 ralimi u A u Univ u A Tr u
7 4 6 sylbi A Univ u A Tr u
8 trint u A Tr u Tr A
9 7 8 syl A Univ Tr A
10 9 adantr A Univ A Tr A
11 grupw u Univ x u 𝒫 x u
12 11 ex u Univ x u 𝒫 x u
13 12 ral2imi u A u Univ u A x u u A 𝒫 x u
14 vex x V
15 14 elint2 x A u A x u
16 vpwex 𝒫 x V
17 16 elint2 𝒫 x A u A 𝒫 x u
18 13 15 17 3imtr4g u A u Univ x A 𝒫 x A
19 18 imp u A u Univ x A 𝒫 x A
20 19 adantlr u A u Univ A x A 𝒫 x A
21 r19.26 u A u Univ x u u A u Univ u A x u
22 grupr u Univ x u y u x y u
23 22 3expia u Univ x u y u x y u
24 23 ral2imi u A u Univ x u u A y u u A x y u
25 21 24 sylbir u A u Univ u A x u u A y u u A x y u
26 vex y V
27 26 elint2 y A u A y u
28 prex x y V
29 28 elint2 x y A u A x y u
30 25 27 29 3imtr4g u A u Univ u A x u y A x y A
31 15 30 sylan2b u A u Univ x A y A x y A
32 31 ralrimiv u A u Univ x A y A x y A
33 32 adantlr u A u Univ A x A y A x y A
34 elmapg A V x V y A x y : x A
35 34 elvd A V y A x y : x A
36 2 35 sylbi A y A x y : x A
37 36 ad2antlr u A u Univ A x A y A x y : x A
38 intss1 u A A u
39 fss y : x A A u y : x u
40 38 39 sylan2 y : x A u A y : x u
41 40 ralrimiva y : x A u A y : x u
42 gruurn u Univ x u y : x u ran y u
43 42 3expia u Univ x u y : x u ran y u
44 43 ral2imi u A u Univ x u u A y : x u u A ran y u
45 21 44 sylbir u A u Univ u A x u u A y : x u u A ran y u
46 15 45 sylan2b u A u Univ x A u A y : x u u A ran y u
47 41 46 syl5 u A u Univ x A y : x A u A ran y u
48 26 rnex ran y V
49 48 uniex ran y V
50 49 elint2 ran y A u A ran y u
51 47 50 syl6ibr u A u Univ x A y : x A ran y A
52 51 adantlr u A u Univ A x A y : x A ran y A
53 37 52 sylbid u A u Univ A x A y A x ran y A
54 53 ralrimiv u A u Univ A x A y A x ran y A
55 20 33 54 3jca u A u Univ A x A 𝒫 x A y A x y A y A x ran y A
56 55 ralrimiva u A u Univ A x A 𝒫 x A y A x y A y A x ran y A
57 4 56 sylanb A Univ A x A 𝒫 x A y A x y A y A x ran y A
58 elgrug A V A Univ Tr A x A 𝒫 x A y A x y A y A x ran y A
59 58 biimpar A V Tr A x A 𝒫 x A y A x y A y A x ran y A A Univ
60 3 10 57 59 syl12anc A Univ A A Univ