Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009)
Ref | Expression | ||
---|---|---|---|
Hypothesis | intid.1 | ||
Assertion | intid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intid.1 | ||
2 | snex | ||
3 | eleq2 | ||
4 | 1 | snid | |
5 | 3 4 | intmin3 | |
6 | 2 5 | ax-mp | |
7 | 1 | elintab | |
8 | id | ||
9 | 7 8 | mpgbir | |
10 | snssi | ||
11 | 9 10 | ax-mp | |
12 | 6 11 | eqssi |