Metamath Proof Explorer


Theorem intmin3

Description: Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005)

Ref Expression
Hypotheses intmin3.2 x = A φ ψ
intmin3.3 ψ
Assertion intmin3 A V x | φ A

Proof

Step Hyp Ref Expression
1 intmin3.2 x = A φ ψ
2 intmin3.3 ψ
3 1 elabg A V A x | φ ψ
4 2 3 mpbiri A V A x | φ
5 intss1 A x | φ x | φ A
6 4 5 syl A V x | φ A