Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The intersection of a class
intminss
Metamath Proof Explorer
Description: Under subset ordering, the intersection of a restricted class
abstraction is less than or equal to any of its members. (Contributed by NM , 7-Sep-2013)
Ref
Expression
Hypothesis
intminss.1
⊢ x = A → φ ↔ ψ
Assertion
intminss
⊢ A ∈ B ∧ ψ → ⋂ x ∈ B | φ ⊆ A
Proof
Step
Hyp
Ref
Expression
1
intminss.1
⊢ x = A → φ ↔ ψ
2
1
elrab
⊢ A ∈ x ∈ B | φ ↔ A ∈ B ∧ ψ
3
intss1
⊢ A ∈ x ∈ B | φ → ⋂ x ∈ B | φ ⊆ A
4
2 3
sylbir
⊢ A ∈ B ∧ ψ → ⋂ x ∈ B | φ ⊆ A