Metamath Proof Explorer


Theorem intnex

Description: If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005)

Ref Expression
Assertion intnex ¬ A V A = V

Proof

Step Hyp Ref Expression
1 intex A A V
2 1 necon1bbii ¬ A V A =
3 inteq A = A =
4 int0 = V
5 3 4 eqtrdi A = A = V
6 2 5 sylbi ¬ A V A = V
7 vprc ¬ V V
8 eleq1 A = V A V V V
9 7 8 mtbiri A = V ¬ A V
10 6 9 impbii ¬ A V A = V