Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The intersection of a class
intsng
Next ⟩
intsn
Metamath Proof Explorer
Ascii
Unicode
Theorem
intsng
Description:
Intersection of a singleton.
(Contributed by
Stefan O'Rear
, 22-Feb-2015)
Ref
Expression
Assertion
intsng
⊢
A
∈
V
→
⋂
A
=
A
Proof
Step
Hyp
Ref
Expression
1
dfsn2
⊢
A
=
A
A
2
1
inteqi
⊢
⋂
A
=
⋂
A
A
3
intprg
⊢
A
∈
V
∧
A
∈
V
→
⋂
A
A
=
A
∩
A
4
3
anidms
⊢
A
∈
V
→
⋂
A
A
=
A
∩
A
5
inidm
⊢
A
∩
A
=
A
6
4
5
eqtrdi
⊢
A
∈
V
→
⋂
A
A
=
A
7
2
6
eqtrid
⊢
A
∈
V
→
⋂
A
=
A