Metamath Proof Explorer


Theorem intsng

Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion intsng A V A = A

Proof

Step Hyp Ref Expression
1 dfsn2 A = A A
2 1 inteqi A = A A
3 intprg A V A V A A = A A
4 3 anidms A V A A = A A
5 inidm A A = A
6 4 5 eqtrdi A V A A = A
7 2 6 eqtrid A V A = A