Metamath Proof Explorer


Theorem intss1

Description: An element of a class includes the intersection of the class. Exercise 4 of TakeutiZaring p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995)

Ref Expression
Assertion intss1 A B B A

Proof

Step Hyp Ref Expression
1 vex x V
2 1 elint x B y y B x y
3 eleq1 y = A y B A B
4 eleq2 y = A x y x A
5 3 4 imbi12d y = A y B x y A B x A
6 5 spcgv A B y y B x y A B x A
7 6 pm2.43a A B y y B x y x A
8 2 7 syl5bi A B x B x A
9 8 ssrdv A B B A