Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The intersection of a class
intssuni2
Next ⟩
intminss
Metamath Proof Explorer
Ascii
Unicode
Theorem
intssuni2
Description:
Subclass relationship for intersection and union.
(Contributed by
NM
, 29-Jul-2006)
Ref
Expression
Assertion
intssuni2
⊢
A
⊆
B
∧
A
≠
∅
→
⋂
A
⊆
⋃
B
Proof
Step
Hyp
Ref
Expression
1
intssuni
⊢
A
≠
∅
→
⋂
A
⊆
⋃
A
2
uniss
⊢
A
⊆
B
→
⋃
A
⊆
⋃
B
3
1
2
sylan9ssr
⊢
A
⊆
B
∧
A
≠
∅
→
⋂
A
⊆
⋃
B