| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|
| 2 |
1
|
sselda |
|
| 3 |
|
elinti |
|
| 4 |
3
|
imp |
|
| 5 |
4
|
adantll |
|
| 6 |
|
tskpwss |
|
| 7 |
2 5 6
|
syl2anc |
|
| 8 |
7
|
ralrimiva |
|
| 9 |
|
ssint |
|
| 10 |
8 9
|
sylibr |
|
| 11 |
|
tskpw |
|
| 12 |
2 5 11
|
syl2anc |
|
| 13 |
12
|
ralrimiva |
|
| 14 |
|
vpwex |
|
| 15 |
14
|
elint2 |
|
| 16 |
13 15
|
sylibr |
|
| 17 |
10 16
|
jca |
|
| 18 |
17
|
ralrimiva |
|
| 19 |
|
elpwi |
|
| 20 |
|
rexnal |
|
| 21 |
|
simpr |
|
| 22 |
|
intex |
|
| 23 |
21 22
|
sylib |
|
| 24 |
23
|
ad2antrr |
|
| 25 |
|
simplr |
|
| 26 |
|
ssdomg |
|
| 27 |
24 25 26
|
sylc |
|
| 28 |
|
vex |
|
| 29 |
|
intss1 |
|
| 30 |
29
|
ad2antrl |
|
| 31 |
|
ssdomg |
|
| 32 |
28 30 31
|
mpsyl |
|
| 33 |
|
simprr |
|
| 34 |
|
simplll |
|
| 35 |
|
simprl |
|
| 36 |
34 35
|
sseldd |
|
| 37 |
25 30
|
sstrd |
|
| 38 |
|
tsken |
|
| 39 |
36 37 38
|
syl2anc |
|
| 40 |
39
|
ord |
|
| 41 |
33 40
|
mt3d |
|
| 42 |
41
|
ensymd |
|
| 43 |
|
domentr |
|
| 44 |
32 42 43
|
syl2anc |
|
| 45 |
|
sbth |
|
| 46 |
27 44 45
|
syl2anc |
|
| 47 |
46
|
rexlimdvaa |
|
| 48 |
20 47
|
biimtrrid |
|
| 49 |
48
|
con1d |
|
| 50 |
|
vex |
|
| 51 |
50
|
elint2 |
|
| 52 |
49 51
|
imbitrrdi |
|
| 53 |
52
|
orrd |
|
| 54 |
19 53
|
sylan2 |
|
| 55 |
54
|
ralrimiva |
|
| 56 |
|
eltsk2g |
|
| 57 |
23 56
|
syl |
|
| 58 |
18 55 57
|
mpbir2and |
|