Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The intersection of a class
intunsn
Next ⟩
rint0
Metamath Proof Explorer
Ascii
Unicode
Theorem
intunsn
Description:
Theorem joining a singleton to an intersection.
(Contributed by
NM
, 29-Sep-2002)
Ref
Expression
Hypothesis
intunsn.1
⊢
B
∈
V
Assertion
intunsn
⊢
⋂
A
∪
B
=
⋂
A
∩
B
Proof
Step
Hyp
Ref
Expression
1
intunsn.1
⊢
B
∈
V
2
intun
⊢
⋂
A
∪
B
=
⋂
A
∩
⋂
B
3
1
intsn
⊢
⋂
B
=
B
4
3
ineq2i
⊢
⋂
A
∩
⋂
B
=
⋂
A
∩
B
5
2
4
eqtri
⊢
⋂
A
∪
B
=
⋂
A
∩
B