Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
1
|
sselda |
|
3 |
|
wuntr |
|
4 |
2 3
|
syl |
|
5 |
4
|
ralrimiva |
|
6 |
|
trint |
|
7 |
5 6
|
syl |
|
8 |
2
|
wun0 |
|
9 |
8
|
ralrimiva |
|
10 |
|
0ex |
|
11 |
10
|
elint2 |
|
12 |
9 11
|
sylibr |
|
13 |
12
|
ne0d |
|
14 |
2
|
adantlr |
|
15 |
|
intss1 |
|
16 |
15
|
adantl |
|
17 |
16
|
sselda |
|
18 |
17
|
an32s |
|
19 |
14 18
|
wununi |
|
20 |
19
|
ralrimiva |
|
21 |
|
vuniex |
|
22 |
21
|
elint2 |
|
23 |
20 22
|
sylibr |
|
24 |
14 18
|
wunpw |
|
25 |
24
|
ralrimiva |
|
26 |
|
vpwex |
|
27 |
26
|
elint2 |
|
28 |
25 27
|
sylibr |
|
29 |
14
|
adantlr |
|
30 |
18
|
adantlr |
|
31 |
15
|
adantl |
|
32 |
31
|
sselda |
|
33 |
32
|
an32s |
|
34 |
29 30 33
|
wunpr |
|
35 |
34
|
ralrimiva |
|
36 |
|
prex |
|
37 |
36
|
elint2 |
|
38 |
35 37
|
sylibr |
|
39 |
38
|
ralrimiva |
|
40 |
23 28 39
|
3jca |
|
41 |
40
|
ralrimiva |
|
42 |
|
simpr |
|
43 |
|
intex |
|
44 |
42 43
|
sylib |
|
45 |
|
iswun |
|
46 |
44 45
|
syl |
|
47 |
7 13 41 46
|
mpbir3and |
|