Metamath Proof Explorer


Theorem invdif

Description: Intersection with universal complement. Remark in Stoll p. 20. (Contributed by NM, 17-Aug-2004)

Ref Expression
Assertion invdif A V B = A B

Proof

Step Hyp Ref Expression
1 dfin2 A V B = A V V B
2 ddif V V B = B
3 2 difeq2i A V V B = A B
4 1 3 eqtri A V B = A B