Metamath Proof Explorer


Theorem invdisjrab

Description: The restricted class abstractions { x e. B | C = y } for distinct y e. A are disjoint. (Contributed by AV, 6-May-2020)

Ref Expression
Assertion invdisjrab Disj y A x B | C = y

Proof

Step Hyp Ref Expression
1 nfcv _ x z
2 nfcv _ x B
3 nfcsb1v _ x z / x C
4 3 nfeq1 x z / x C = y
5 csbeq1a x = z C = z / x C
6 5 eqeq1d x = z C = y z / x C = y
7 1 2 4 6 elrabf z x B | C = y z B z / x C = y
8 ax-1 z / x C = y y A z / x C = y
9 7 8 simplbiim z x B | C = y y A z / x C = y
10 9 impcom y A z x B | C = y z / x C = y
11 10 rgen2 y A z x B | C = y z / x C = y
12 invdisj y A z x B | C = y z / x C = y Disj y A x B | C = y
13 11 12 ax-mp Disj y A x B | C = y