Metamath Proof Explorer


Theorem invdisjrabw

Description: Version of invdisjrab with a disjoint variable condition, which does not require ax-13 . (Contributed by Gino Giotto, 26-Jan-2024)

Ref Expression
Assertion invdisjrabw Disj y A x B | C = y

Proof

Step Hyp Ref Expression
1 nfcv _ x z
2 nfcv _ x B
3 nfcsb1v _ x z / x C
4 3 nfeq1 x z / x C = y
5 csbeq1a x = z C = z / x C
6 5 eqeq1d x = z C = y z / x C = y
7 1 2 4 6 elrabf z x B | C = y z B z / x C = y
8 simprr y A z B z / x C = y z / x C = y
9 7 8 sylan2b y A z x B | C = y z / x C = y
10 9 rgen2 y A z x B | C = y z / x C = y
11 invdisj y A z x B | C = y z / x C = y Disj y A x B | C = y
12 10 11 ax-mp Disj y A x B | C = y