Metamath Proof Explorer


Theorem invffval

Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017) Removed redundant hypotheses. (Revised by Zhi Wang, 27-Oct-2025)

Ref Expression
Hypotheses invfval.b B = Base C
invfval.n N = Inv C
invfval.c φ C Cat
invffval.s S = Sect C
Assertion invffval φ N = x B , y B x S y y S x -1

Proof

Step Hyp Ref Expression
1 invfval.b B = Base C
2 invfval.n N = Inv C
3 invfval.c φ C Cat
4 invffval.s S = Sect C
5 fveq2 c = C Base c = Base C
6 5 1 eqtr4di c = C Base c = B
7 fveq2 c = C Sect c = Sect C
8 7 4 eqtr4di c = C Sect c = S
9 8 oveqd c = C x Sect c y = x S y
10 8 oveqd c = C y Sect c x = y S x
11 10 cnveqd c = C y Sect c x -1 = y S x -1
12 9 11 ineq12d c = C x Sect c y y Sect c x -1 = x S y y S x -1
13 6 6 12 mpoeq123dv c = C x Base c , y Base c x Sect c y y Sect c x -1 = x B , y B x S y y S x -1
14 df-inv Inv = c Cat x Base c , y Base c x Sect c y y Sect c x -1
15 1 fvexi B V
16 15 15 mpoex x B , y B x S y y S x -1 V
17 13 14 16 fvmpt C Cat Inv C = x B , y B x S y y S x -1
18 3 17 syl φ Inv C = x B , y B x S y y S x -1
19 2 18 eqtrid φ N = x B , y B x S y y S x -1