Database
BASIC CATEGORY THEORY
Categories
Sections, inverses, isomorphisms
invfval
Next ⟩
isinv
Metamath Proof Explorer
Ascii
Unicode
Theorem
invfval
Description:
Value of the inverse relation.
(Contributed by
Mario Carneiro
, 2-Jan-2017)
Ref
Expression
Hypotheses
invfval.b
⊢
B
=
Base
C
invfval.n
⊢
N
=
Inv
⁡
C
invfval.c
⊢
φ
→
C
∈
Cat
invfval.x
⊢
φ
→
X
∈
B
invfval.y
⊢
φ
→
Y
∈
B
invfval.s
⊢
S
=
Sect
⁡
C
Assertion
invfval
⊢
φ
→
X
N
Y
=
X
S
Y
∩
Y
S
X
-1
Proof
Step
Hyp
Ref
Expression
1
invfval.b
⊢
B
=
Base
C
2
invfval.n
⊢
N
=
Inv
⁡
C
3
invfval.c
⊢
φ
→
C
∈
Cat
4
invfval.x
⊢
φ
→
X
∈
B
5
invfval.y
⊢
φ
→
Y
∈
B
6
invfval.s
⊢
S
=
Sect
⁡
C
7
1
2
3
4
4
6
invffval
⊢
φ
→
N
=
x
∈
B
,
y
∈
B
⟼
x
S
y
∩
y
S
x
-1
8
simprl
⊢
φ
∧
x
=
X
∧
y
=
Y
→
x
=
X
9
simprr
⊢
φ
∧
x
=
X
∧
y
=
Y
→
y
=
Y
10
8
9
oveq12d
⊢
φ
∧
x
=
X
∧
y
=
Y
→
x
S
y
=
X
S
Y
11
9
8
oveq12d
⊢
φ
∧
x
=
X
∧
y
=
Y
→
y
S
x
=
Y
S
X
12
11
cnveqd
⊢
φ
∧
x
=
X
∧
y
=
Y
→
y
S
x
-1
=
Y
S
X
-1
13
10
12
ineq12d
⊢
φ
∧
x
=
X
∧
y
=
Y
→
x
S
y
∩
y
S
x
-1
=
X
S
Y
∩
Y
S
X
-1
14
ovex
⊢
X
S
Y
∈
V
15
14
inex1
⊢
X
S
Y
∩
Y
S
X
-1
∈
V
16
15
a1i
⊢
φ
→
X
S
Y
∩
Y
S
X
-1
∈
V
17
7
13
4
5
16
ovmpod
⊢
φ
→
X
N
Y
=
X
S
Y
∩
Y
S
X
-1