Metamath Proof Explorer


Theorem invinv

Description: The inverse of the inverse of an isomorphism is itself. Proposition 3.14(1) of Adamek p. 29. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b B = Base C
invfval.n N = Inv C
invfval.c φ C Cat
invfval.x φ X B
invfval.y φ Y B
isoval.n I = Iso C
invinv.f φ F X I Y
Assertion invinv φ Y N X X N Y F = F

Proof

Step Hyp Ref Expression
1 invfval.b B = Base C
2 invfval.n N = Inv C
3 invfval.c φ C Cat
4 invfval.x φ X B
5 invfval.y φ Y B
6 isoval.n I = Iso C
7 invinv.f φ F X I Y
8 1 2 3 4 5 invsym2 φ X N Y -1 = Y N X
9 8 fveq1d φ X N Y -1 X N Y F = Y N X X N Y F
10 1 2 3 4 5 6 invf1o φ X N Y : X I Y 1-1 onto Y I X
11 f1ocnvfv1 X N Y : X I Y 1-1 onto Y I X F X I Y X N Y -1 X N Y F = F
12 10 7 11 syl2anc φ X N Y -1 X N Y F = F
13 9 12 eqtr3d φ Y N X X N Y F = F