Metamath Proof Explorer
Description: If G is an inverse to F , then G is an isomorphism.
(Contributed by Mario Carneiro, 3-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
invfval.b |
|
|
|
invfval.n |
|
|
|
invfval.c |
|
|
|
invfval.x |
|
|
|
invfval.y |
|
|
|
isoval.n |
|
|
|
inviso1.1 |
|
|
Assertion |
inviso2 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invfval.b |
|
| 2 |
|
invfval.n |
|
| 3 |
|
invfval.c |
|
| 4 |
|
invfval.x |
|
| 5 |
|
invfval.y |
|
| 6 |
|
isoval.n |
|
| 7 |
|
inviso1.1 |
|
| 8 |
1 2 3 4 5
|
invsym |
|
| 9 |
7 8
|
mpbid |
|
| 10 |
1 2 3 5 4 6 9
|
inviso1 |
|