Metamath Proof Explorer
Description: If G is an inverse to F , then G is an isomorphism.
(Contributed by Mario Carneiro, 3-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
invfval.b |
|
|
|
invfval.n |
|
|
|
invfval.c |
|
|
|
invfval.x |
|
|
|
invfval.y |
|
|
|
isoval.n |
|
|
|
inviso1.1 |
|
|
Assertion |
inviso2 |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
invfval.b |
|
2 |
|
invfval.n |
|
3 |
|
invfval.c |
|
4 |
|
invfval.x |
|
5 |
|
invfval.y |
|
6 |
|
isoval.n |
|
7 |
|
inviso1.1 |
|
8 |
1 2 3 4 5
|
invsym |
|
9 |
7 8
|
mpbid |
|
10 |
1 2 3 5 4 6 9
|
inviso1 |
|