Metamath Proof Explorer


Theorem inviso2

Description: If G is an inverse to F , then G is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses invfval.b B = Base C
invfval.n N = Inv C
invfval.c φ C Cat
invfval.x φ X B
invfval.y φ Y B
isoval.n I = Iso C
inviso1.1 φ F X N Y G
Assertion inviso2 φ G Y I X

Proof

Step Hyp Ref Expression
1 invfval.b B = Base C
2 invfval.n N = Inv C
3 invfval.c φ C Cat
4 invfval.x φ X B
5 invfval.y φ Y B
6 isoval.n I = Iso C
7 inviso1.1 φ F X N Y G
8 1 2 3 4 5 invsym φ F X N Y G G Y N X F
9 7 8 mpbid φ G Y N X F
10 1 2 3 5 4 6 9 inviso1 φ G Y I X