Metamath Proof Explorer


Theorem invisoinvr

Description: The inverse of an isomorphism is invers to the isomorphism. (Contributed by AV, 9-Apr-2020)

Ref Expression
Hypotheses invisoinv.b B = Base C
invisoinv.i I = Iso C
invisoinv.n N = Inv C
invisoinv.c φ C Cat
invisoinv.x φ X B
invisoinv.y φ Y B
invisoinv.f φ F X I Y
Assertion invisoinvr φ F X N Y X N Y F

Proof

Step Hyp Ref Expression
1 invisoinv.b B = Base C
2 invisoinv.i I = Iso C
3 invisoinv.n N = Inv C
4 invisoinv.c φ C Cat
5 invisoinv.x φ X B
6 invisoinv.y φ Y B
7 invisoinv.f φ F X I Y
8 1 2 3 4 5 6 7 invisoinvl φ X N Y F Y N X F
9 1 3 4 5 6 invsym φ F X N Y X N Y F X N Y F Y N X F
10 8 9 mpbird φ F X N Y X N Y F