Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Homomorphisms and isomorphisms of left modules
invlmhm
Next ⟩
lmhmco
Metamath Proof Explorer
Ascii
Unicode
Theorem
invlmhm
Description:
The negative function on a module is linear.
(Contributed by
Stefan O'Rear
, 5-Sep-2015)
Ref
Expression
Hypothesis
invlmhm.b
⊢
I
=
inv
g
⁡
M
Assertion
invlmhm
⊢
M
∈
LMod
→
I
∈
M
LMHom
M
Proof
Step
Hyp
Ref
Expression
1
invlmhm.b
⊢
I
=
inv
g
⁡
M
2
eqid
⊢
Base
M
=
Base
M
3
eqid
⊢
⋅
M
=
⋅
M
4
eqid
⊢
Scalar
⁡
M
=
Scalar
⁡
M
5
eqid
⊢
Base
Scalar
⁡
M
=
Base
Scalar
⁡
M
6
id
⊢
M
∈
LMod
→
M
∈
LMod
7
eqidd
⊢
M
∈
LMod
→
Scalar
⁡
M
=
Scalar
⁡
M
8
lmodabl
⊢
M
∈
LMod
→
M
∈
Abel
9
2
1
invghm
⊢
M
∈
Abel
↔
I
∈
M
GrpHom
M
10
8
9
sylib
⊢
M
∈
LMod
→
I
∈
M
GrpHom
M
11
2
4
3
1
5
lmodvsinv2
⊢
M
∈
LMod
∧
x
∈
Base
Scalar
⁡
M
∧
y
∈
Base
M
→
x
⋅
M
I
⁡
y
=
I
⁡
x
⋅
M
y
12
11
eqcomd
⊢
M
∈
LMod
∧
x
∈
Base
Scalar
⁡
M
∧
y
∈
Base
M
→
I
⁡
x
⋅
M
y
=
x
⋅
M
I
⁡
y
13
12
3expb
⊢
M
∈
LMod
∧
x
∈
Base
Scalar
⁡
M
∧
y
∈
Base
M
→
I
⁡
x
⋅
M
y
=
x
⋅
M
I
⁡
y
14
2
3
3
4
4
5
6
6
7
10
13
islmhmd
⊢
M
∈
LMod
→
I
∈
M
LMHom
M