Metamath Proof Explorer


Theorem invlmhm

Description: The negative function on a module is linear. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypothesis invlmhm.b I = inv g M
Assertion invlmhm M LMod I M LMHom M

Proof

Step Hyp Ref Expression
1 invlmhm.b I = inv g M
2 eqid Base M = Base M
3 eqid M = M
4 eqid Scalar M = Scalar M
5 eqid Base Scalar M = Base Scalar M
6 id M LMod M LMod
7 eqidd M LMod Scalar M = Scalar M
8 lmodabl M LMod M Abel
9 2 1 invghm M Abel I M GrpHom M
10 8 9 sylib M LMod I M GrpHom M
11 2 4 3 1 5 lmodvsinv2 M LMod x Base Scalar M y Base M x M I y = I x M y
12 11 eqcomd M LMod x Base Scalar M y Base M I x M y = x M I y
13 12 3expb M LMod x Base Scalar M y Base M I x M y = x M I y
14 2 3 3 4 4 5 6 6 7 10 13 islmhmd M LMod I M LMHom M