Metamath Proof Explorer


Theorem invoppggim

Description: The inverse is an antiautomorphism on any group. (Contributed by Stefan O'Rear, 26-Aug-2015)

Ref Expression
Hypotheses invoppggim.o O = opp 𝑔 G
invoppggim.i I = inv g G
Assertion invoppggim G Grp I G GrpIso O

Proof

Step Hyp Ref Expression
1 invoppggim.o O = opp 𝑔 G
2 invoppggim.i I = inv g G
3 eqid Base G = Base G
4 1 3 oppgbas Base G = Base O
5 eqid + G = + G
6 eqid + O = + O
7 id G Grp G Grp
8 1 oppggrp G Grp O Grp
9 3 2 grpinvf G Grp I : Base G Base G
10 3 5 2 grpinvadd G Grp x Base G y Base G I x + G y = I y + G I x
11 10 3expb G Grp x Base G y Base G I x + G y = I y + G I x
12 5 1 6 oppgplus I x + O I y = I y + G I x
13 11 12 eqtr4di G Grp x Base G y Base G I x + G y = I x + O I y
14 3 4 5 6 7 8 9 13 isghmd G Grp I G GrpHom O
15 3 2 7 grpinvf1o G Grp I : Base G 1-1 onto Base G
16 3 4 isgim I G GrpIso O I G GrpHom O I : Base G 1-1 onto Base G
17 14 15 16 sylanbrc G Grp I G GrpIso O