Metamath Proof Explorer


Theorem invrcn

Description: The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to the field. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mulrcn.j J = TopOpen R
invrcn.i I = inv r R
invrcn.u U = Unit R
Assertion invrcn R TopDRing I J 𝑡 U Cn J

Proof

Step Hyp Ref Expression
1 mulrcn.j J = TopOpen R
2 invrcn.i I = inv r R
3 invrcn.u U = Unit R
4 tdrgtps R TopDRing R TopSp
5 1 tpstop R TopSp J Top
6 cnrest2r J Top J 𝑡 U Cn J 𝑡 U J 𝑡 U Cn J
7 4 5 6 3syl R TopDRing J 𝑡 U Cn J 𝑡 U J 𝑡 U Cn J
8 1 2 3 invrcn2 R TopDRing I J 𝑡 U Cn J 𝑡 U
9 7 8 sseldd R TopDRing I J 𝑡 U Cn J