Metamath Proof Explorer


Theorem invrcn2

Description: The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to itself. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mulrcn.j J = TopOpen R
invrcn.i I = inv r R
invrcn.u U = Unit R
Assertion invrcn2 R TopDRing I J 𝑡 U Cn J 𝑡 U

Proof

Step Hyp Ref Expression
1 mulrcn.j J = TopOpen R
2 invrcn.i I = inv r R
3 invrcn.u U = Unit R
4 eqid mulGrp R = mulGrp R
5 4 3 tdrgunit R TopDRing mulGrp R 𝑠 U TopGrp
6 eqid mulGrp R 𝑠 U = mulGrp R 𝑠 U
7 4 1 mgptopn J = TopOpen mulGrp R
8 6 7 resstopn J 𝑡 U = TopOpen mulGrp R 𝑠 U
9 3 6 2 invrfval I = inv g mulGrp R 𝑠 U
10 8 9 tgpinv mulGrp R 𝑠 U TopGrp I J 𝑡 U Cn J 𝑡 U
11 5 10 syl R TopDRing I J 𝑡 U Cn J 𝑡 U