Metamath Proof Explorer


Theorem invrfval

Description: Multiplicative inverse function for a division ring. (Contributed by NM, 21-Sep-2011) (Revised by Mario Carneiro, 25-Dec-2014)

Ref Expression
Hypotheses invrfval.u U = Unit R
invrfval.g G = mulGrp R 𝑠 U
invrfval.i I = inv r R
Assertion invrfval I = inv g G

Proof

Step Hyp Ref Expression
1 invrfval.u U = Unit R
2 invrfval.g G = mulGrp R 𝑠 U
3 invrfval.i I = inv r R
4 fveq2 r = R mulGrp r = mulGrp R
5 fveq2 r = R Unit r = Unit R
6 5 1 syl6eqr r = R Unit r = U
7 4 6 oveq12d r = R mulGrp r 𝑠 Unit r = mulGrp R 𝑠 U
8 7 2 syl6eqr r = R mulGrp r 𝑠 Unit r = G
9 8 fveq2d r = R inv g mulGrp r 𝑠 Unit r = inv g G
10 df-invr inv r = r V inv g mulGrp r 𝑠 Unit r
11 fvex inv g G V
12 9 10 11 fvmpt R V inv r R = inv g G
13 fvprc ¬ R V inv r R =
14 base0 = Base
15 eqid inv g = inv g
16 14 15 grpinvfn inv g Fn
17 fn0 inv g Fn inv g =
18 16 17 mpbi inv g =
19 13 18 syl6eqr ¬ R V inv r R = inv g
20 fvprc ¬ R V mulGrp R =
21 20 oveq1d ¬ R V mulGrp R 𝑠 U = 𝑠 U
22 2 21 syl5eq ¬ R V G = 𝑠 U
23 ress0 𝑠 U =
24 22 23 syl6eq ¬ R V G =
25 24 fveq2d ¬ R V inv g G = inv g
26 19 25 eqtr4d ¬ R V inv r R = inv g G
27 12 26 pm2.61i inv r R = inv g G
28 3 27 eqtri I = inv g G