Database
BASIC CATEGORY THEORY
Categories
Sections, inverses, isomorphisms
invsym
Next ⟩
invsym2
Metamath Proof Explorer
Ascii
Unicode
Theorem
invsym
Description:
The inverse relation is symmetric.
(Contributed by
Mario Carneiro
, 2-Jan-2017)
Ref
Expression
Hypotheses
invfval.b
⊢
B
=
Base
C
invfval.n
⊢
N
=
Inv
⁡
C
invfval.c
⊢
φ
→
C
∈
Cat
invfval.x
⊢
φ
→
X
∈
B
invfval.y
⊢
φ
→
Y
∈
B
Assertion
invsym
⊢
φ
→
F
X
N
Y
G
↔
G
Y
N
X
F
Proof
Step
Hyp
Ref
Expression
1
invfval.b
⊢
B
=
Base
C
2
invfval.n
⊢
N
=
Inv
⁡
C
3
invfval.c
⊢
φ
→
C
∈
Cat
4
invfval.x
⊢
φ
→
X
∈
B
5
invfval.y
⊢
φ
→
Y
∈
B
6
eqid
⊢
Sect
⁡
C
=
Sect
⁡
C
7
1
2
3
4
5
6
isinv
⊢
φ
→
F
X
N
Y
G
↔
F
X
Sect
⁡
C
Y
G
∧
G
Y
Sect
⁡
C
X
F
8
7
biancomd
⊢
φ
→
F
X
N
Y
G
↔
G
Y
Sect
⁡
C
X
F
∧
F
X
Sect
⁡
C
Y
G
9
1
2
3
5
4
6
isinv
⊢
φ
→
G
Y
N
X
F
↔
G
Y
Sect
⁡
C
X
F
∧
F
X
Sect
⁡
C
Y
G
10
8
9
bitr4d
⊢
φ
→
F
X
N
Y
G
↔
G
Y
N
X
F