Metamath Proof Explorer


Theorem invsym

Description: The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b B = Base C
invfval.n N = Inv C
invfval.c φ C Cat
invfval.x φ X B
invfval.y φ Y B
Assertion invsym φ F X N Y G G Y N X F

Proof

Step Hyp Ref Expression
1 invfval.b B = Base C
2 invfval.n N = Inv C
3 invfval.c φ C Cat
4 invfval.x φ X B
5 invfval.y φ Y B
6 eqid Sect C = Sect C
7 1 2 3 4 5 6 isinv φ F X N Y G F X Sect C Y G G Y Sect C X F
8 7 biancomd φ F X N Y G G Y Sect C X F F X Sect C Y G
9 1 2 3 5 4 6 isinv φ G Y N X F G Y Sect C X F F X Sect C Y G
10 8 9 bitr4d φ F X N Y G G Y N X F