Metamath Proof Explorer


Theorem ioc0

Description: An empty open interval of extended reals. (Contributed by FL, 30-May-2014)

Ref Expression
Assertion ioc0 A * B * A B = B A

Proof

Step Hyp Ref Expression
1 iocval A * B * A B = x * | A < x x B
2 1 eqeq1d A * B * A B = x * | A < x x B =
3 df-ne x * | A < x x B ¬ x * | A < x x B =
4 rabn0 x * | A < x x B x * A < x x B
5 3 4 bitr3i ¬ x * | A < x x B = x * A < x x B
6 xrltletr A * x * B * A < x x B A < B
7 6 3com23 A * B * x * A < x x B A < B
8 7 3expa A * B * x * A < x x B A < B
9 8 rexlimdva A * B * x * A < x x B A < B
10 qbtwnxr A * B * A < B x A < x x < B
11 qre x x
12 11 rexrd x x *
13 12 a1i x * A * B * A < B x x *
14 xrltle x * B * x < B x B
15 14 3ad2antr2 x * A * B * A < B x < B x B
16 15 anim2d x * A * B * A < B A < x x < B A < x x B
17 13 16 anim12d x * A * B * A < B x A < x x < B x * A < x x B
18 17 ex x * A * B * A < B x A < x x < B x * A < x x B
19 12 18 syl x A * B * A < B x A < x x < B x * A < x x B
20 19 adantr x A < x x < B A * B * A < B x A < x x < B x * A < x x B
21 20 pm2.43b A * B * A < B x A < x x < B x * A < x x B
22 21 reximdv2 A * B * A < B x A < x x < B x * A < x x B
23 10 22 mpd A * B * A < B x * A < x x B
24 23 3expia A * B * A < B x * A < x x B
25 9 24 impbid A * B * x * A < x x B A < B
26 5 25 syl5bb A * B * ¬ x * | A < x x B = A < B
27 xrltnle A * B * A < B ¬ B A
28 26 27 bitrd A * B * ¬ x * | A < x x B = ¬ B A
29 28 con4bid A * B * x * | A < x x B = B A
30 2 29 bitrd A * B * A B = B A