Metamath Proof Explorer


Theorem iocinioc2

Description: Intersection between two open-below, closed-above intervals sharing the same upper bound. (Contributed by Thierry Arnoux, 7-Aug-2017)

Ref Expression
Assertion iocinioc2 A * B * C * A B A C B C = B C

Proof

Step Hyp Ref Expression
1 elin x A C B C x A C x B C
2 simpl1 A * B * C * A B A *
3 simpl3 A * B * C * A B C *
4 elioc1 A * C * x A C x * A < x x C
5 2 3 4 syl2anc A * B * C * A B x A C x * A < x x C
6 simpl2 A * B * C * A B B *
7 elioc1 B * C * x B C x * B < x x C
8 6 3 7 syl2anc A * B * C * A B x B C x * B < x x C
9 5 8 anbi12d A * B * C * A B x A C x B C x * A < x x C x * B < x x C
10 simp31 A * B * C * A B x * B < x x C x *
11 2 3adant3 A * B * C * A B x * B < x x C A *
12 6 3adant3 A * B * C * A B x * B < x x C B *
13 simp2 A * B * C * A B x * B < x x C A B
14 simp32 A * B * C * A B x * B < x x C B < x
15 11 12 10 13 14 xrlelttrd A * B * C * A B x * B < x x C A < x
16 simp33 A * B * C * A B x * B < x x C x C
17 10 15 16 3jca A * B * C * A B x * B < x x C x * A < x x C
18 17 3expia A * B * C * A B x * B < x x C x * A < x x C
19 18 pm4.71rd A * B * C * A B x * B < x x C x * A < x x C x * B < x x C
20 9 19 bitr4d A * B * C * A B x A C x B C x * B < x x C
21 1 20 syl5bb A * B * C * A B x A C B C x * B < x x C
22 21 8 bitr4d A * B * C * A B x A C B C x B C
23 22 eqrdv A * B * C * A B A C B C = B C