Metamath Proof Explorer
		
		
		
		Description:  A nonempty left-open, right-closed interval is uncountable.
       (Contributed by Glauco Siliprandi, 3-Jan-2021)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						iocnct.a | 
						   | 
					
					
						 | 
						 | 
						iocnct.b | 
						   | 
					
					
						 | 
						 | 
						iocnct.l | 
						   | 
					
					
						 | 
						 | 
						iocnct.c | 
						   | 
					
				
					 | 
					Assertion | 
					iocnct | 
					   | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iocnct.a | 
							   | 
						
						
							| 2 | 
							
								
							 | 
							iocnct.b | 
							   | 
						
						
							| 3 | 
							
								
							 | 
							iocnct.l | 
							   | 
						
						
							| 4 | 
							
								
							 | 
							iocnct.c | 
							   | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							   | 
						
						
							| 6 | 
							
								1 2 3 5
							 | 
							ioonct | 
							   | 
						
						
							| 7 | 
							
								
							 | 
							ioossioc | 
							   | 
						
						
							| 8 | 
							
								7 4
							 | 
							sseqtrri | 
							   | 
						
						
							| 9 | 
							
								8
							 | 
							a1i | 
							   | 
						
						
							| 10 | 
							
								6 9
							 | 
							ssnct | 
							   |