Metamath Proof Explorer


Theorem iocnct

Description: A nonempty left-open, right-closed interval is uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses iocnct.a φ A *
iocnct.b φ B *
iocnct.l φ A < B
iocnct.c C = A B
Assertion iocnct φ ¬ C ω

Proof

Step Hyp Ref Expression
1 iocnct.a φ A *
2 iocnct.b φ B *
3 iocnct.l φ A < B
4 iocnct.c C = A B
5 eqid A B = A B
6 1 2 3 5 ioonct φ ¬ A B ω
7 ioossioc A B A B
8 7 4 sseqtrri A B C
9 8 a1i φ A B C
10 6 9 ssnct φ ¬ C ω