Metamath Proof Explorer
Description: A nonempty left-open, right-closed interval is uncountable.
(Contributed by Glauco Siliprandi, 3-Jan-2021)
|
|
Ref |
Expression |
|
Hypotheses |
iocnct.a |
|
|
|
iocnct.b |
|
|
|
iocnct.l |
|
|
|
iocnct.c |
|
|
Assertion |
iocnct |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
iocnct.a |
|
2 |
|
iocnct.b |
|
3 |
|
iocnct.l |
|
4 |
|
iocnct.c |
|
5 |
|
eqid |
|
6 |
1 2 3 5
|
ioonct |
|
7 |
|
ioossioc |
|
8 |
7 4
|
sseqtrri |
|
9 |
8
|
a1i |
|
10 |
6 9
|
ssnct |
|