Step |
Hyp |
Ref |
Expression |
1 |
|
iocopnst.1 |
|
2 |
|
iooretop |
|
3 |
|
simp1 |
|
4 |
3
|
a1i |
|
5 |
|
simp2 |
|
6 |
5
|
a1i |
|
7 |
|
ltp1 |
|
8 |
7
|
adantr |
|
9 |
|
peano2re |
|
10 |
|
lelttr |
|
11 |
10
|
3expa |
|
12 |
11
|
ancom1s |
|
13 |
12
|
ancomsd |
|
14 |
9 13
|
mpidan |
|
15 |
8 14
|
mpand |
|
16 |
15
|
impr |
|
17 |
16
|
3adantr2 |
|
18 |
17
|
ex |
|
19 |
18
|
ad2antlr |
|
20 |
4 6 19
|
3jcad |
|
21 |
|
rexr |
|
22 |
|
elico2 |
|
23 |
21 22
|
sylan2 |
|
24 |
23
|
biimpa |
|
25 |
|
lelttr |
|
26 |
|
ltle |
|
27 |
26
|
3adant2 |
|
28 |
25 27
|
syld |
|
29 |
28
|
3expa |
|
30 |
29
|
imp |
|
31 |
30
|
an4s |
|
32 |
31
|
3adantr3 |
|
33 |
32
|
ex |
|
34 |
33
|
anasss |
|
35 |
34
|
3adantr3 |
|
36 |
35
|
adantlr |
|
37 |
24 36
|
syldan |
|
38 |
|
simp3 |
|
39 |
38
|
a1i |
|
40 |
4 37 39
|
3jcad |
|
41 |
20 40
|
jcad |
|
42 |
|
simpl1 |
|
43 |
|
simpl2 |
|
44 |
|
simpr3 |
|
45 |
42 43 44
|
3jca |
|
46 |
41 45
|
impbid1 |
|
47 |
24
|
simp1d |
|
48 |
47
|
rexrd |
|
49 |
|
simplr |
|
50 |
|
elioc2 |
|
51 |
48 49 50
|
syl2anc |
|
52 |
|
elin |
|
53 |
9
|
rexrd |
|
54 |
53
|
ad2antlr |
|
55 |
|
elioo2 |
|
56 |
48 54 55
|
syl2anc |
|
57 |
|
elicc2 |
|
58 |
57
|
adantr |
|
59 |
56 58
|
anbi12d |
|
60 |
52 59
|
syl5bb |
|
61 |
46 51 60
|
3bitr4d |
|
62 |
61
|
eqrdv |
|
63 |
|
ineq1 |
|
64 |
63
|
rspceeqv |
|
65 |
2 62 64
|
sylancr |
|
66 |
|
retop |
|
67 |
|
ovex |
|
68 |
|
elrest |
|
69 |
66 67 68
|
mp2an |
|
70 |
65 69
|
sylibr |
|
71 |
|
iccssre |
|
72 |
71
|
adantr |
|
73 |
|
eqid |
|
74 |
73 1
|
resubmet |
|
75 |
72 74
|
syl |
|
76 |
70 75
|
eleqtrrd |
|
77 |
76
|
ex |
|