Metamath Proof Explorer


Theorem iocopnst

Description: A half-open interval ending at B is open in the closed interval from A to B . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Dec-2013)

Ref Expression
Hypothesis iocopnst.1 J = MetOpen abs A B × A B
Assertion iocopnst A B C A B C B J

Proof

Step Hyp Ref Expression
1 iocopnst.1 J = MetOpen abs A B × A B
2 iooretop C B + 1 topGen ran .
3 simp1 v C < v v B v
4 3 a1i A B C A B v C < v v B v
5 simp2 v C < v v B C < v
6 5 a1i A B C A B v C < v v B C < v
7 ltp1 B B < B + 1
8 7 adantr B v B < B + 1
9 peano2re B B + 1
10 lelttr v B B + 1 v B B < B + 1 v < B + 1
11 10 3expa v B B + 1 v B B < B + 1 v < B + 1
12 11 ancom1s B v B + 1 v B B < B + 1 v < B + 1
13 12 ancomsd B v B + 1 B < B + 1 v B v < B + 1
14 9 13 mpidan B v B < B + 1 v B v < B + 1
15 8 14 mpand B v v B v < B + 1
16 15 impr B v v B v < B + 1
17 16 3adantr2 B v C < v v B v < B + 1
18 17 ex B v C < v v B v < B + 1
19 18 ad2antlr A B C A B v C < v v B v < B + 1
20 4 6 19 3jcad A B C A B v C < v v B v C < v v < B + 1
21 rexr B B *
22 elico2 A B * C A B C A C C < B
23 21 22 sylan2 A B C A B C A C C < B
24 23 biimpa A B C A B C A C C < B
25 lelttr A C v A C C < v A < v
26 ltle A v A < v A v
27 26 3adant2 A C v A < v A v
28 25 27 syld A C v A C C < v A v
29 28 3expa A C v A C C < v A v
30 29 imp A C v A C C < v A v
31 30 an4s A C A C v C < v A v
32 31 3adantr3 A C A C v C < v v B A v
33 32 ex A C A C v C < v v B A v
34 33 anasss A C A C v C < v v B A v
35 34 3adantr3 A C A C C < B v C < v v B A v
36 35 adantlr A B C A C C < B v C < v v B A v
37 24 36 syldan A B C A B v C < v v B A v
38 simp3 v C < v v B v B
39 38 a1i A B C A B v C < v v B v B
40 4 37 39 3jcad A B C A B v C < v v B v A v v B
41 20 40 jcad A B C A B v C < v v B v C < v v < B + 1 v A v v B
42 simpl1 v C < v v < B + 1 v A v v B v
43 simpl2 v C < v v < B + 1 v A v v B C < v
44 simpr3 v C < v v < B + 1 v A v v B v B
45 42 43 44 3jca v C < v v < B + 1 v A v v B v C < v v B
46 41 45 impbid1 A B C A B v C < v v B v C < v v < B + 1 v A v v B
47 24 simp1d A B C A B C
48 47 rexrd A B C A B C *
49 simplr A B C A B B
50 elioc2 C * B v C B v C < v v B
51 48 49 50 syl2anc A B C A B v C B v C < v v B
52 elin v C B + 1 A B v C B + 1 v A B
53 9 rexrd B B + 1 *
54 53 ad2antlr A B C A B B + 1 *
55 elioo2 C * B + 1 * v C B + 1 v C < v v < B + 1
56 48 54 55 syl2anc A B C A B v C B + 1 v C < v v < B + 1
57 elicc2 A B v A B v A v v B
58 57 adantr A B C A B v A B v A v v B
59 56 58 anbi12d A B C A B v C B + 1 v A B v C < v v < B + 1 v A v v B
60 52 59 syl5bb A B C A B v C B + 1 A B v C < v v < B + 1 v A v v B
61 46 51 60 3bitr4d A B C A B v C B v C B + 1 A B
62 61 eqrdv A B C A B C B = C B + 1 A B
63 ineq1 v = C B + 1 v A B = C B + 1 A B
64 63 rspceeqv C B + 1 topGen ran . C B = C B + 1 A B v topGen ran . C B = v A B
65 2 62 64 sylancr A B C A B v topGen ran . C B = v A B
66 retop topGen ran . Top
67 ovex A B V
68 elrest topGen ran . Top A B V C B topGen ran . 𝑡 A B v topGen ran . C B = v A B
69 66 67 68 mp2an C B topGen ran . 𝑡 A B v topGen ran . C B = v A B
70 65 69 sylibr A B C A B C B topGen ran . 𝑡 A B
71 iccssre A B A B
72 71 adantr A B C A B A B
73 eqid topGen ran . = topGen ran .
74 73 1 resubmet A B J = topGen ran . 𝑡 A B
75 72 74 syl A B C A B J = topGen ran . 𝑡 A B
76 70 75 eleqtrrd A B C A B C B J
77 76 ex A B C A B C B J