Metamath Proof Explorer


Theorem iocssioo

Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017)

Ref Expression
Assertion iocssioo A * B * A C D < B C D A B

Proof

Step Hyp Ref Expression
1 df-ioo . = a * , b * x * | a < x x < b
2 df-ioc . = a * , b * x * | a < x x b
3 xrlelttr A * C * w * A C C < w A < w
4 xrlelttr w * D * B * w D D < B w < B
5 1 2 3 4 ixxss12 A * B * A C D < B C D A B