Metamath Proof Explorer


Theorem ioo0

Description: An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007)

Ref Expression
Assertion ioo0 A * B * A B = B A

Proof

Step Hyp Ref Expression
1 iooval A * B * A B = x * | A < x x < B
2 1 eqeq1d A * B * A B = x * | A < x x < B =
3 df-ne x * | A < x x < B ¬ x * | A < x x < B =
4 rabn0 x * | A < x x < B x * A < x x < B
5 3 4 bitr3i ¬ x * | A < x x < B = x * A < x x < B
6 xrlttr A * x * B * A < x x < B A < B
7 6 3com23 A * B * x * A < x x < B A < B
8 7 3expa A * B * x * A < x x < B A < B
9 8 rexlimdva A * B * x * A < x x < B A < B
10 qbtwnxr A * B * A < B x A < x x < B
11 qre x x
12 11 rexrd x x *
13 12 anim1i x A < x x < B x * A < x x < B
14 13 reximi2 x A < x x < B x * A < x x < B
15 10 14 syl A * B * A < B x * A < x x < B
16 15 3expia A * B * A < B x * A < x x < B
17 9 16 impbid A * B * x * A < x x < B A < B
18 5 17 syl5bb A * B * ¬ x * | A < x x < B = A < B
19 xrltnle A * B * A < B ¬ B A
20 18 19 bitrd A * B * ¬ x * | A < x x < B = ¬ B A
21 20 con4bid A * B * x * | A < x x < B = B A
22 2 21 bitrd A * B * A B = B A