Metamath Proof Explorer


Theorem ioo2bl

Description: An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007) (Revised by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypothesis remet.1 D = abs 2
Assertion ioo2bl A B A B = A + B 2 ball D B A 2

Proof

Step Hyp Ref Expression
1 remet.1 D = abs 2
2 readdcl B A B + A
3 2 ancoms A B B + A
4 3 rehalfcld A B B + A 2
5 resubcl B A B A
6 5 ancoms A B B A
7 6 rehalfcld A B B A 2
8 1 bl2ioo B + A 2 B A 2 B + A 2 ball D B A 2 = B + A 2 B A 2 B + A 2 + B A 2
9 4 7 8 syl2anc A B B + A 2 ball D B A 2 = B + A 2 B A 2 B + A 2 + B A 2
10 recn B B
11 recn A A
12 addcom B A B + A = A + B
13 10 11 12 syl2anr A B B + A = A + B
14 13 oveq1d A B B + A 2 = A + B 2
15 14 oveq1d A B B + A 2 ball D B A 2 = A + B 2 ball D B A 2
16 halfaddsub B A B + A 2 + B A 2 = B B + A 2 B A 2 = A
17 10 11 16 syl2anr A B B + A 2 + B A 2 = B B + A 2 B A 2 = A
18 17 simprd A B B + A 2 B A 2 = A
19 17 simpld A B B + A 2 + B A 2 = B
20 18 19 oveq12d A B B + A 2 B A 2 B + A 2 + B A 2 = A B
21 9 15 20 3eqtr3rd A B A B = A + B 2 ball D B A 2