Metamath Proof Explorer


Theorem ioo2blex

Description: An open interval of reals in terms of a ball. (Contributed by Mario Carneiro, 14-Nov-2013)

Ref Expression
Hypothesis remet.1 D = abs 2
Assertion ioo2blex A B A B ran ball D

Proof

Step Hyp Ref Expression
1 remet.1 D = abs 2
2 1 ioo2bl A B A B = A + B 2 ball D B A 2
3 1 rexmet D ∞Met
4 readdcl A B A + B
5 4 rehalfcld A B A + B 2
6 resubcl B A B A
7 6 ancoms A B B A
8 7 rehalfcld A B B A 2
9 8 rexrd A B B A 2 *
10 blelrn D ∞Met A + B 2 B A 2 * A + B 2 ball D B A 2 ran ball D
11 3 5 9 10 mp3an2i A B A + B 2 ball D B A 2 ran ball D
12 2 11 eqeltrd A B A B ran ball D