Metamath Proof Explorer


Theorem ioodisj

Description: If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009)

Ref Expression
Assertion ioodisj A * B * C * D * B C A B C D =

Proof

Step Hyp Ref Expression
1 iooss1 B * B C C D B D
2 1 ad4ant24 A * B * C * D * B C C D B D
3 ioossicc B D B D
4 2 3 sstrdi A * B * C * D * B C C D B D
5 sslin C D B D A B C D A B B D
6 4 5 syl A * B * C * D * B C A B C D A B B D
7 simplll A * B * C * D * B C A *
8 simpllr A * B * C * D * B C B *
9 simplrr A * B * C * D * B C D *
10 df-ioo . = x * , y * z * | x < z z < y
11 df-icc . = x * , y * z * | x z z y
12 xrlenlt B * w * B w ¬ w < B
13 10 11 12 ixxdisj A * B * D * A B B D =
14 7 8 9 13 syl3anc A * B * C * D * B C A B B D =
15 6 14 sseqtrd A * B * C * D * B C A B C D
16 ss0 A B C D A B C D =
17 15 16 syl A * B * C * D * B C A B C D =