Metamath Proof Explorer


Theorem ioodvbdlimc1lem1

Description: If F has bounded derivative on ( A (,) B ) then a sequence of points in its image converges to its limsup . (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses ioodvbdlimc1lem1.a φ A
ioodvbdlimc1lem1.b φ B
ioodvbdlimc1lem1.altb φ A < B
ioodvbdlimc1lem1.f φ F : A B cn
ioodvbdlimc1lem1.dmdv φ dom F = A B
ioodvbdlimc1lem1.dvbd φ y x A B F x y
ioodvbdlimc1lem1.m φ M
ioodvbdlimc1lem1.r φ R : M A B
ioodvbdlimc1lem1.s S = j M F R j
ioodvbdlimc1lem1.rcnv φ R dom
ioodvbdlimc1lem1.k K = sup k M | i k R i R k < x sup ran z A B F z < + 1 <
Assertion ioodvbdlimc1lem1 φ S lim sup S

Proof

Step Hyp Ref Expression
1 ioodvbdlimc1lem1.a φ A
2 ioodvbdlimc1lem1.b φ B
3 ioodvbdlimc1lem1.altb φ A < B
4 ioodvbdlimc1lem1.f φ F : A B cn
5 ioodvbdlimc1lem1.dmdv φ dom F = A B
6 ioodvbdlimc1lem1.dvbd φ y x A B F x y
7 ioodvbdlimc1lem1.m φ M
8 ioodvbdlimc1lem1.r φ R : M A B
9 ioodvbdlimc1lem1.s S = j M F R j
10 ioodvbdlimc1lem1.rcnv φ R dom
11 ioodvbdlimc1lem1.k K = sup k M | i k R i R k < x sup ran z A B F z < + 1 <
12 eqid M = M
13 cncff F : A B cn F : A B
14 4 13 syl φ F : A B
15 14 adantr φ j M F : A B
16 8 ffvelrnda φ j M R j A B
17 15 16 ffvelrnd φ j M F R j
18 17 9 fmptd φ S : M
19 ssrab2 k M | i k R i R k < x sup ran z A B F z < + 1 M
20 rpre x + x
21 20 adantl φ x + x
22 2fveq3 z = x F z = F x
23 22 cbvmptv z A B F z = x A B F x
24 23 rneqi ran z A B F z = ran x A B F x
25 24 supeq1i sup ran z A B F z < = sup ran x A B F x <
26 ioomidp A B A < B A + B 2 A B
27 1 2 3 26 syl3anc φ A + B 2 A B
28 27 ne0d φ A B
29 ioossre A B
30 29 a1i φ A B
31 dvfre F : A B A B F : dom F
32 14 30 31 syl2anc φ F : dom F
33 5 feq2d φ F : dom F F : A B
34 32 33 mpbid φ F : A B
35 ax-resscn
36 35 a1i φ
37 34 36 fssd φ F : A B
38 37 ffvelrnda φ x A B F x
39 38 abscld φ x A B F x
40 eqid x A B F x = x A B F x
41 eqid sup ran x A B F x < = sup ran x A B F x <
42 28 39 6 40 41 suprnmpt φ sup ran x A B F x < x A B F x sup ran x A B F x <
43 42 simpld φ sup ran x A B F x <
44 25 43 eqeltrid φ sup ran z A B F z <
45 44 adantr φ x + sup ran z A B F z <
46 peano2re sup ran z A B F z < sup ran z A B F z < + 1
47 45 46 syl φ x + sup ran z A B F z < + 1
48 0red φ 0
49 1red φ 1
50 48 49 readdcld φ 0 + 1
51 44 46 syl φ sup ran z A B F z < + 1
52 48 ltp1d φ 0 < 0 + 1
53 37 27 ffvelrnd φ F A + B 2
54 53 abscld φ F A + B 2
55 53 absge0d φ 0 F A + B 2
56 42 simprd φ x A B F x sup ran x A B F x <
57 2fveq3 y = x F y = F x
58 25 a1i y = x sup ran z A B F z < = sup ran x A B F x <
59 57 58 breq12d y = x F y sup ran z A B F z < F x sup ran x A B F x <
60 59 cbvralvw y A B F y sup ran z A B F z < x A B F x sup ran x A B F x <
61 56 60 sylibr φ y A B F y sup ran z A B F z <
62 2fveq3 y = A + B 2 F y = F A + B 2
63 62 breq1d y = A + B 2 F y sup ran z A B F z < F A + B 2 sup ran z A B F z <
64 63 rspcva A + B 2 A B y A B F y sup ran z A B F z < F A + B 2 sup ran z A B F z <
65 27 61 64 syl2anc φ F A + B 2 sup ran z A B F z <
66 48 54 44 55 65 letrd φ 0 sup ran z A B F z <
67 48 44 49 66 leadd1dd φ 0 + 1 sup ran z A B F z < + 1
68 48 50 51 52 67 ltletrd φ 0 < sup ran z A B F z < + 1
69 68 gt0ne0d φ sup ran z A B F z < + 1 0
70 69 adantr φ x + sup ran z A B F z < + 1 0
71 21 47 70 redivcld φ x + x sup ran z A B F z < + 1
72 rpgt0 x + 0 < x
73 72 adantl φ x + 0 < x
74 68 adantr φ x + 0 < sup ran z A B F z < + 1
75 21 47 73 74 divgt0d φ x + 0 < x sup ran z A B F z < + 1
76 71 75 elrpd φ x + x sup ran z A B F z < + 1 +
77 7 adantr φ x + M
78 10 adantr φ x + R dom
79 12 climcau M R dom w + k M i k R i R k < w
80 77 78 79 syl2anc φ x + w + k M i k R i R k < w
81 breq2 w = x sup ran z A B F z < + 1 R i R k < w R i R k < x sup ran z A B F z < + 1
82 81 rexralbidv w = x sup ran z A B F z < + 1 k M i k R i R k < w k M i k R i R k < x sup ran z A B F z < + 1
83 82 rspcva x sup ran z A B F z < + 1 + w + k M i k R i R k < w k M i k R i R k < x sup ran z A B F z < + 1
84 76 80 83 syl2anc φ x + k M i k R i R k < x sup ran z A B F z < + 1
85 rabn0 k M | i k R i R k < x sup ran z A B F z < + 1 k M i k R i R k < x sup ran z A B F z < + 1
86 84 85 sylibr φ x + k M | i k R i R k < x sup ran z A B F z < + 1
87 infssuzcl k M | i k R i R k < x sup ran z A B F z < + 1 M k M | i k R i R k < x sup ran z A B F z < + 1 sup k M | i k R i R k < x sup ran z A B F z < + 1 < k M | i k R i R k < x sup ran z A B F z < + 1
88 19 86 87 sylancr φ x + sup k M | i k R i R k < x sup ran z A B F z < + 1 < k M | i k R i R k < x sup ran z A B F z < + 1
89 11 88 eqeltrid φ x + K k M | i k R i R k < x sup ran z A B F z < + 1
90 19 89 sselid φ x + K M
91 2fveq3 j = i F R j = F R i
92 uzss K M K M
93 90 92 syl φ x + K M
94 93 sselda φ x + i K i M
95 14 ad2antrr φ x + i K F : A B
96 8 ad2antrr φ x + i K R : M A B
97 96 94 ffvelrnd φ x + i K R i A B
98 95 97 ffvelrnd φ x + i K F R i
99 9 91 94 98 fvmptd3 φ x + i K S i = F R i
100 2fveq3 j = K F R j = F R K
101 90 adantr φ x + i K K M
102 96 101 ffvelrnd φ x + i K R K A B
103 95 102 ffvelrnd φ x + i K F R K
104 9 100 101 103 fvmptd3 φ x + i K S K = F R K
105 99 104 oveq12d φ x + i K S i S K = F R i F R K
106 105 fveq2d φ x + i K S i S K = F R i F R K
107 98 recnd φ x + i K F R i
108 103 recnd φ x + i K F R K
109 107 108 subcld φ x + i K F R i F R K
110 109 abscld φ x + i K F R i F R K
111 110 adantr φ x + i K R i < R K F R i F R K
112 44 ad2antrr φ x + i K sup ran z A B F z <
113 112 adantr φ x + i K R i < R K sup ran z A B F z <
114 8 adantr φ x + R : M A B
115 114 90 ffvelrnd φ x + R K A B
116 29 115 sselid φ x + R K
117 116 ad2antrr φ x + i K R i < R K R K
118 29 97 sselid φ x + i K R i
119 118 adantr φ x + i K R i < R K R i
120 117 119 resubcld φ x + i K R i < R K R K R i
121 113 120 remulcld φ x + i K R i < R K sup ran z A B F z < R K R i
122 20 ad3antlr φ x + i K R i < R K x
123 107 adantr φ x + i K R i < R K F R i
124 108 adantr φ x + i K R i < R K F R K
125 123 124 abssubd φ x + i K R i < R K F R i F R K = F R K F R i
126 1 ad3antrrr φ x + i K R i < R K A
127 2 ad3antrrr φ x + i K R i < R K B
128 95 adantr φ x + i K R i < R K F : A B
129 5 ad3antrrr φ x + i K R i < R K dom F = A B
130 61 ad3antrrr φ x + i K R i < R K y A B F y sup ran z A B F z <
131 97 adantr φ x + i K R i < R K R i A B
132 118 rexrd φ x + i K R i *
133 132 adantr φ x + i K R i < R K R i *
134 2 rexrd φ B *
135 134 ad2antrr φ x + i K B *
136 135 adantr φ x + i K R i < R K B *
137 simpr φ x + i K R i < R K R i < R K
138 1 rexrd φ A *
139 138 adantr φ x + A *
140 134 adantr φ x + B *
141 iooltub A * B * R K A B R K < B
142 139 140 115 141 syl3anc φ x + R K < B
143 142 ad2antrr φ x + i K R i < R K R K < B
144 133 136 117 137 143 eliood φ x + i K R i < R K R K R i B
145 126 127 128 129 113 130 131 144 dvbdfbdioolem1 φ x + i K R i < R K F R K F R i sup ran z A B F z < R K R i F R K F R i sup ran z A B F z < B A
146 145 simpld φ x + i K R i < R K F R K F R i sup ran z A B F z < R K R i
147 125 146 eqbrtrd φ x + i K R i < R K F R i F R K sup ran z A B F z < R K R i
148 113 46 syl φ x + i K R i < R K sup ran z A B F z < + 1
149 148 120 remulcld φ x + i K R i < R K sup ran z A B F z < + 1 R K R i
150 119 117 posdifd φ x + i K R i < R K R i < R K 0 < R K R i
151 137 150 mpbid φ x + i K R i < R K 0 < R K R i
152 120 151 elrpd φ x + i K R i < R K R K R i +
153 113 ltp1d φ x + i K R i < R K sup ran z A B F z < < sup ran z A B F z < + 1
154 113 148 152 153 ltmul1dd φ x + i K R i < R K sup ran z A B F z < R K R i < sup ran z A B F z < + 1 R K R i
155 29 102 sselid φ x + i K R K
156 118 155 resubcld φ x + i K R i R K
157 156 recnd φ x + i K R i R K
158 157 abscld φ x + i K R i R K
159 158 adantr φ x + i K R i < R K R i R K
160 71 ad2antrr φ x + i K R i < R K x sup ran z A B F z < + 1
161 120 leabsd φ x + i K R i < R K R K R i R K R i
162 117 recnd φ x + i K R i < R K R K
163 118 recnd φ x + i K R i
164 163 adantr φ x + i K R i < R K R i
165 162 164 abssubd φ x + i K R i < R K R K R i = R i R K
166 161 165 breqtrd φ x + i K R i < R K R K R i R i R K
167 fveq2 k = K k = K
168 fveq2 k = K R k = R K
169 168 oveq2d k = K R i R k = R i R K
170 169 fveq2d k = K R i R k = R i R K
171 170 breq1d k = K R i R k < x sup ran z A B F z < + 1 R i R K < x sup ran z A B F z < + 1
172 167 171 raleqbidv k = K i k R i R k < x sup ran z A B F z < + 1 i K R i R K < x sup ran z A B F z < + 1
173 172 elrab K k M | i k R i R k < x sup ran z A B F z < + 1 K M i K R i R K < x sup ran z A B F z < + 1
174 89 173 sylib φ x + K M i K R i R K < x sup ran z A B F z < + 1
175 174 simprd φ x + i K R i R K < x sup ran z A B F z < + 1
176 175 r19.21bi φ x + i K R i R K < x sup ran z A B F z < + 1
177 176 adantr φ x + i K R i < R K R i R K < x sup ran z A B F z < + 1
178 120 159 160 166 177 lelttrd φ x + i K R i < R K R K R i < x sup ran z A B F z < + 1
179 51 68 elrpd φ sup ran z A B F z < + 1 +
180 179 ad3antrrr φ x + i K R i < R K sup ran z A B F z < + 1 +
181 120 122 180 ltmuldiv2d φ x + i K R i < R K sup ran z A B F z < + 1 R K R i < x R K R i < x sup ran z A B F z < + 1
182 178 181 mpbird φ x + i K R i < R K sup ran z A B F z < + 1 R K R i < x
183 121 149 122 154 182 lttrd φ x + i K R i < R K sup ran z A B F z < R K R i < x
184 111 121 122 147 183 lelttrd φ x + i K R i < R K F R i F R K < x
185 fveq2 R i = R K F R i = F R K
186 185 oveq1d R i = R K F R i F R K = F R K F R K
187 108 subidd φ x + i K F R K F R K = 0
188 186 187 sylan9eqr φ x + i K R i = R K F R i F R K = 0
189 188 abs00bd φ x + i K R i = R K F R i F R K = 0
190 72 ad3antlr φ x + i K R i = R K 0 < x
191 189 190 eqbrtrd φ x + i K R i = R K F R i F R K < x
192 191 adantlr φ x + i K ¬ R i < R K R i = R K F R i F R K < x
193 simpll φ x + i K ¬ R i < R K ¬ R i = R K φ x + i K
194 155 ad2antrr φ x + i K ¬ R i < R K ¬ R i = R K R K
195 118 ad2antrr φ x + i K ¬ R i < R K ¬ R i = R K R i
196 id R K = R i R K = R i
197 196 eqcomd R K = R i R i = R K
198 197 necon3bi ¬ R i = R K R K R i
199 198 adantl φ x + i K ¬ R i < R K ¬ R i = R K R K R i
200 simplr φ x + i K ¬ R i < R K ¬ R i = R K ¬ R i < R K
201 194 195 199 200 lttri5d φ x + i K ¬ R i < R K ¬ R i = R K R K < R i
202 110 adantr φ x + i K R K < R i F R i F R K
203 112 156 remulcld φ x + i K sup ran z A B F z < R i R K
204 203 adantr φ x + i K R K < R i sup ran z A B F z < R i R K
205 20 ad3antlr φ x + i K R K < R i x
206 1 ad3antrrr φ x + i K R K < R i A
207 2 ad3antrrr φ x + i K R K < R i B
208 95 adantr φ x + i K R K < R i F : A B
209 5 ad3antrrr φ x + i K R K < R i dom F = A B
210 44 ad3antrrr φ x + i K R K < R i sup ran z A B F z <
211 61 ad3antrrr φ x + i K R K < R i y A B F y sup ran z A B F z <
212 102 adantr φ x + i K R K < R i R K A B
213 116 rexrd φ x + R K *
214 213 ad2antrr φ x + i K R K < R i R K *
215 207 rexrd φ x + i K R K < R i B *
216 118 adantr φ x + i K R K < R i R i
217 simpr φ x + i K R K < R i R K < R i
218 138 ad2antrr φ x + i K A *
219 iooltub A * B * R i A B R i < B
220 218 135 97 219 syl3anc φ x + i K R i < B
221 220 adantr φ x + i K R K < R i R i < B
222 214 215 216 217 221 eliood φ x + i K R K < R i R i R K B
223 206 207 208 209 210 211 212 222 dvbdfbdioolem1 φ x + i K R K < R i F R i F R K sup ran z A B F z < R i R K F R i F R K sup ran z A B F z < B A
224 223 simpld φ x + i K R K < R i F R i F R K sup ran z A B F z < R i R K
225 1red φ x + i K R K < R i 1
226 210 225 readdcld φ x + i K R K < R i sup ran z A B F z < + 1
227 155 adantr φ x + i K R K < R i R K
228 216 227 resubcld φ x + i K R K < R i R i R K
229 226 228 remulcld φ x + i K R K < R i sup ran z A B F z < + 1 R i R K
230 210 46 syl φ x + i K R K < R i sup ran z A B F z < + 1
231 227 216 posdifd φ x + i K R K < R i R K < R i 0 < R i R K
232 217 231 mpbid φ x + i K R K < R i 0 < R i R K
233 228 232 elrpd φ x + i K R K < R i R i R K +
234 210 ltp1d φ x + i K R K < R i sup ran z A B F z < < sup ran z A B F z < + 1
235 210 230 233 234 ltmul1dd φ x + i K R K < R i sup ran z A B F z < R i R K < sup ran z A B F z < + 1 R i R K
236 158 adantr φ x + i K R K < R i R i R K
237 71 ad2antrr φ x + i K R K < R i x sup ran z A B F z < + 1
238 228 leabsd φ x + i K R K < R i R i R K R i R K
239 176 adantr φ x + i K R K < R i R i R K < x sup ran z A B F z < + 1
240 228 236 237 238 239 lelttrd φ x + i K R K < R i R i R K < x sup ran z A B F z < + 1
241 179 ad3antrrr φ x + i K R K < R i sup ran z A B F z < + 1 +
242 228 205 241 ltmuldiv2d φ x + i K R K < R i sup ran z A B F z < + 1 R i R K < x R i R K < x sup ran z A B F z < + 1
243 240 242 mpbird φ x + i K R K < R i sup ran z A B F z < + 1 R i R K < x
244 204 229 205 235 243 lttrd φ x + i K R K < R i sup ran z A B F z < R i R K < x
245 202 204 205 224 244 lelttrd φ x + i K R K < R i F R i F R K < x
246 193 201 245 syl2anc φ x + i K ¬ R i < R K ¬ R i = R K F R i F R K < x
247 192 246 pm2.61dan φ x + i K ¬ R i < R K F R i F R K < x
248 184 247 pm2.61dan φ x + i K F R i F R K < x
249 106 248 eqbrtrd φ x + i K S i S K < x
250 249 ralrimiva φ x + i K S i S K < x
251 fveq2 k = K S k = S K
252 251 oveq2d k = K S i S k = S i S K
253 252 fveq2d k = K S i S k = S i S K
254 253 breq1d k = K S i S k < x S i S K < x
255 167 254 raleqbidv k = K i k S i S k < x i K S i S K < x
256 255 rspcev K M i K S i S K < x k M i k S i S k < x
257 90 250 256 syl2anc φ x + k M i k S i S k < x
258 257 ralrimiva φ x + k M i k S i S k < x
259 12 18 258 caurcvg φ S lim sup S