Step |
Hyp |
Ref |
Expression |
1 |
|
ioodvbdlimc2.a |
|
2 |
|
ioodvbdlimc2.b |
|
3 |
|
ioodvbdlimc2.f |
|
4 |
|
ioodvbdlimc2.dmdv |
|
5 |
|
ioodvbdlimc2.dvbd |
|
6 |
1
|
adantr |
|
7 |
2
|
adantr |
|
8 |
|
simpr |
|
9 |
3
|
adantr |
|
10 |
4
|
adantr |
|
11 |
5
|
adantr |
|
12 |
|
2fveq3 |
|
13 |
12
|
cbvmptv |
|
14 |
13
|
rneqi |
|
15 |
14
|
supeq1i |
|
16 |
|
eqid |
|
17 |
|
oveq2 |
|
18 |
17
|
oveq2d |
|
19 |
18
|
fveq2d |
|
20 |
19
|
cbvmptv |
|
21 |
18
|
cbvmptv |
|
22 |
|
eqid |
|
23 |
|
biid |
|
24 |
6 7 8 9 10 11 15 16 20 21 22 23
|
ioodvbdlimc2lem |
|
25 |
24
|
ne0d |
|
26 |
|
ax-resscn |
|
27 |
26
|
a1i |
|
28 |
3 27
|
fssd |
|
29 |
28
|
adantr |
|
30 |
|
simpr |
|
31 |
1
|
rexrd |
|
32 |
31
|
adantr |
|
33 |
2
|
rexrd |
|
34 |
33
|
adantr |
|
35 |
|
ioo0 |
|
36 |
32 34 35
|
syl2anc |
|
37 |
30 36
|
mpbird |
|
38 |
37
|
feq2d |
|
39 |
29 38
|
mpbid |
|
40 |
2
|
recnd |
|
41 |
40
|
adantr |
|
42 |
39 41
|
limcdm0 |
|
43 |
|
0cn |
|
44 |
43
|
ne0ii |
|
45 |
44
|
a1i |
|
46 |
42 45
|
eqnetrd |
|
47 |
25 46 1 2
|
ltlecasei |
|